
<html>
<head>
<title>A clock based on the server's time</title>
<script language="javascript" type="text/javascript">
function getTime(){
 if ((typeof XMLHttpRequest) != 'undefined') {
 xmlhttp = new XMLHttpRequest();
 xmlhttp.open("GET", "time.php", true);
 xmlhttp.onreadystatechange = function(){
 if (xmlhttp.readyState==4) {
 var c = document.getElementById("clock");
 c.innerHTML = xmlhttp.responseText;
 }
 };
 xmlhttp.send(null);
 }else{
 alert('This browser does not support the
XMLHttpRequest object');
 }
 setTimeout("getTime()", 10000); // every ten seconds
}

</script>
</head>
<body onLoad="getTime()">

--:--:--

</body>
</html>
<!-- Reference: http://jibbering.com/2002/4/
httprequest.html -->

xmlHTTP.html

<?php

 echo date("h:m:s");

?>

time.php

Javascript

GET time.php

The script "time.php" is a server-side script, which
means that it is interpreted by the PHP processor
on the server before its output is sent to the client
that uses HTTP's GET method to access it. In
other words, instead of delivering the bytes as is,
the way HTML is delivered directly from the hard
drive, this script is run first and its output will be
sent instead. The result is that we can use the
script on the server side to provide timely content
for our Javascript-enhanced web page (left). The
web page uses the XMLHttpRequest object to
send a "behind the scenes" GET request to the
server, which then gives it some data it can
display in the "clock" span.

The getTime() function is called the first time from
the onLoad event (body tag), and subsequently it
registers itself to be called again in 10 seconds
(10000 milliseconds). The XMLHttpRequest
object has an event called "onreadystatechange"
that we use to respond when the request is
finished. We implement the event by attaching a
function definition to it. That function will then be
called when the request's "ready state" changes.
It may have failed due to a bad URL or something
like that, so in the function's body we check to
see that the xmlhttp.readyState variable is 4 (for
reasons only the programmers of the
XMLHttpRequest can explain!). At this point we
can take advantage of the handy
xmlhttp.responseText property, which now
contains whatever was sent from the server side
script. We then put that into our "clock" span.

date()

time.php

